If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2+12a+4=0
a = 4; b = 12; c = +4;
Δ = b2-4ac
Δ = 122-4·4·4
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{5}}{2*4}=\frac{-12-4\sqrt{5}}{8} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{5}}{2*4}=\frac{-12+4\sqrt{5}}{8} $
| 4(t-1)=9+t | | 5(x–6)=2(x+3) | | -3(x+3)=-6x+18 | | 4w+17=w-13 | | x+6=x/2+8 | | 28=6n-5 | | 3=4+2(3-x) | | 2(j+5)=18 | | (1/2)x-4=-4+x | | g-0.26=25.2 | | 11/2c=4/c-3 | | (x+9)+98=180 | | (x+19)+(x+13)+(5x+14)=180 | | (3x-17)+98=90 | | 18-30x-12x^2=0 | | T=24t-18 | | -2(2+7x)=10 | | –h–7=3 | | T=0.25t-18 | | –3(2u–7)=–39 | | f(3)=3*3^2–2*3+2 | | 5-4=-9x+2x | | -5=5k+59 | | 4x2-16x+12=0 | | –8−10z=–4z+10 | | X-6+x•2=180 | | 7/12/5=45/n | | 65=10p+5 | | 8v+20=6 | | 1/2x+1/2×=×+1 | | 21=14×n | | 5^xx2^x-1=100 |